determinations of this excess can be made. Existence of the higher oxides $\mathrm{Ni}_{3} \mathrm{O}_{4}, \mathrm{Ni}_{2} \mathrm{O}_{3}$ and even NiO_{2} has been proposed. However, X-ray diffraction patterns obtained from these higher oxides do not reveal a structure different from that of NiO . They do indicate that with increasing state of oxidation the materials become increasingly amorphous.

A possibly related problem is how does bivalent nickel in pure NiO co-ordinate oxygen octahedrally. It has two too many electrons to form six $d^{2} s p^{3}$ bonds. One is therefore led to investigate the possibility of resonating structures. A square co-ordinated complex of $d s p^{2}$ bonds with partial ionic character resonating among the three possible square configurations about nickel would account for the observed magnetic moment corresponding to approximately 0.8 unpaired electrons. Removal of a nickel atom from the crystal removes two electrons from the crystal. These presumably are supplied by one or two of the nickel ions nearest the vacant lattice site with the production of higher valent nickel and an approach to the formation of $d^{2} s p^{3}$ bonds. Equilibrium concentrations of interior lattice vacancies are not known but obviously in the extreme oxide (with composition near NiO_{2}) most of the vacant lattice sites must be on the
crystal boundaries; that is to say, the crystal tends toward the amorphous state.

Much of the above work followed suggestions made by others at these laboratories. In particular the author wishes to acknowledge F. Morin (who also contributed measurements of magnetic susceptibilities), L. Wooten, K. Storks, Mrs E. A. Wood, and P. Anderson.

References

Burbank, R. D. \& Evans, H. T. (1948). Acta Cryst. 1, 330.

Dufat, E. (1896). C.R. Acad. Sci., Paris, 123, 495.
Dufat, E. (1897). Ann. Chim. (Phys.), (7), 12, 257.
Goralevich, D. K. (1930a). J. Russ. Chem. Soc. 62, 879.
Goralevich, D. K. (1930b). J. Russ. Chem. Soc. 62, 1165.

Goralevich, D. K. (1930c). J. Russ. Chem. Soc. 62, 1577.

Lander, J. J. (1951). J. Amer. Chem. Soc. April.
Lander, J. J. \& Wooten, L. A. (1951). J. Amer. Chem. Soc. April.
Pauling, L. (1939). The Nature of the Chemical Bond. Ithaca: Cornell University Press.
Thurber, E. A. (1937). Thesis. Polytechnic Institute of Brooklyn.

The Structure of Millon's Base and its Salts

By William N. Lipscomb
School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A.

(Received 17 July 1950)

Abstract

The structure of Millon's base, $\mathrm{Hg}_{2} \mathrm{NOH} .2 \mathrm{H}_{2} \mathrm{O}$, consists of a three-dimensional framework $\mathrm{Hg}_{2} \mathrm{~N}^{+}$ in an idealized cristobalite type of arrangement. The mercury atoms form linear $s p$ bonds, while the nitrogen forms tetrahedral $s p^{3}$ bonds, in a face-centered cubic lattice with $a=9.58 \mathrm{~A}$. The $\mathrm{Hg}-\mathrm{N}$ bond distance is $2.07_{3} \mathrm{~A}$.

In the course of a study of reactions between mercury (I) compounds and ammonia (Arora, Lipscomb \& Sneed, 1951), a sample of Millon's base, $\mathrm{Hg}_{2} \mathrm{NOH} .2 \mathrm{H}_{2} \mathrm{O}$, was prepared. A powder diffraction pattern was taken, and has now been analyzed to yield the essentials of the structure of this compound.

Experimental results

The sample was placed inside a pyrex capillary about 0.2 mm . in diameter, and powder photographs were taken in a cylindrical camera of 5.73 cm . radius. Integrated intensities of the lines were estimated by a combination of micro-photometer tracings and visual estimates, and corrections were applied to these intensities, but not to the spacings, for the effect of absorption by the sample (Internationale Tabellen, 1935, vol. 2, p. 583).

Because initial attempts to index the pattern failed, a radial distribution function was prepared. The expression (Waser \& Schomaker, 1945)

$$
r D(r)=\sum_{i} \frac{I_{i} \sin 2 \theta_{i}}{1+\cos ^{2} 2 \theta_{i}} \exp \left[-3 \frac{\sin ^{2} \theta_{i}}{\lambda^{2}}\right] \sin 2 \pi h_{i} r
$$

where $h_{i}=2 \sin \theta_{i} / \lambda$, was summed at intervals of $0 \cdot 1 \mathrm{~A}$. in r to give the result shown in Fig. 1. The function shows three clearly resolved peaks at $3 \cdot 4,5 \cdot 9$ and 6.9 A . These distances are nearly what would be expected from $\mathrm{Hg} . . \mathrm{Hg}$ distances in the configurations

which, for an $\mathrm{Hg}-\mathrm{N}$ bond distance of 2.07 A . and tetrahedral configuration about the nitrogen atoms, would give $3 \cdot 38,5 \cdot 86$ and 6.77 A., respectively, for these peaks. Then, on the assumption that mercury forms linear $s p$ bonds and that nitrogen forms tetrahedral $s p^{3}$ bonds, the various idealized SiO_{2}-types of arrangement were

Fig. 1. Radial distribution function.
tested for agreemen t of spacings and intensities for the $\mathrm{Hg}_{2} \mathrm{~N}^{+}$part of the structure. Although the quartz and tridymite arrangements produced no agreement, the cristobalite type of structure was found to be in excellent agreement with both the intensities and spacings as shown in Table 1.

Table 1. Diffraction data for $\mathrm{Hg}_{2} \mathrm{NOH} .2 \mathrm{H}_{2} \mathrm{O}$

$h k l$	$d_{\text {obs. }}$ (A.)	$d_{\text {calc. }}$ (A.)	$I_{\text {obs }}$	$I_{\text {calc. }}$
111	5.518	5.530	237	131
311	$2 \cdot 884$	$2 \cdot 888$	65	71
222	$2 \cdot 757$	$2 \cdot 765$	131	87
400	$2 \cdot 395$	$2 \cdot 394$	48	45
331	$2 \cdot 198$	$2 \cdot 197$	43	35
511, 333	1.842	1.843	24	28
440	$1 \cdot 693$	$1 \cdot 693$	41	31
531	$1 \cdot 619$	$1 \cdot 619$	36	26
533	1-4.59	$1 \cdot 460$	8	9
622	$1 \cdot 443$	$1 \cdot 443$	42	37
444	$1 \cdot 383$	$1 \cdot 382$	11	10
711,511	$1 \cdot 341$	$1 \cdot 341$	15	13
731, 553	$1 \cdot 247$	$1 \cdot 247$	17	16
800	1-196	1-197	6	4
733	$1 \cdot 171$	$1 \cdot 170$	5	4
751, 555	1-106	$1 \cdot 106$	8	8
662	$1 \cdot 100$	1.098	16	13
840	1.072	1.071	14	12
911, 753	1.053	$1 \cdot 051$	11	8
931	$1 \cdot 004$	1.004	3	5
844	0.978	0.977	13	10
933, 771, 755	0.963	0.962	11	7
951, 773	0.926	0.926	5	7
10,2,2, 666	0.922	0.921	16	13
953	$0 \cdot 894$	$0 \cdot 893$	4	6
11.1.1, 775	0.865	$0 \cdot 864$	4	6
880	0.848	$0 \cdot 846$	4	6
11.3,1, 971, 955	$0 \cdot 838$	0.837	16	17
11,3.3, 973	0.812	$0 \cdot 813$	3	9
10.6.2	0.811	$0 \cdot 809$	21	29
12,0,0, 884	0.799	0.798	14	20
11.5.1, 777	$0 \cdot 790$	$0 \cdot 790$	5	9

The mercury atoms are thus placed at $\frac{1}{8}, \frac{1}{8}, \frac{1}{8} ; \frac{1}{8}, \frac{1}{8}, \frac{1}{8}$; $\frac{\overline{1}}{8}, \frac{1}{8}, \frac{\overline{1}}{8}$ and $\frac{\overline{1}}{8}, \frac{1}{8}, \frac{1}{8}$ plus the face-centered permutation, and the nitrogen atoms are placed in the diamond arrangement at $0,0,0$ and $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ plus the face-centered permutation. The space group is $T_{d}^{2}-F \overline{4} 3 m$, and the lattice parameter is 9.58 ± 0.01 A., as determined from careful measurements on a film taken with use of the Straumanis technique. Calculation of the intensities
was made only from the positions of the mercury atoms with the use of the form factor (Internationale Tabellen, 1935, vol. 2, p. 573) multiplied by the temperature factor $\exp \left[-1 \sin ^{2} \theta / \lambda^{2}\right]$. The usual Lorentz-polarization factors and multiplicity factors were included. It may be remarked that all of those reflections due to the special positions of the mercury atorns are observed and no others. The cell thus contains eight $\mathrm{Hg}_{2} \mathrm{NOH} .2 \mathrm{H}_{2} \mathrm{O}$ units, and gives a calculated density of $7 \cdot 1$ g.cm. ${ }^{-3}$ in fair agreement with our observed value of 7.9 g.cm. ${ }^{-3}$. Sidgwick (1950, vol. 1, p. 318) reports a value of 8.52 g.cm..$^{-3}$ for $\mathrm{Hg}_{2} \mathrm{NOH}$.

Because of the high background near the center of the films a large error was made in the estimation of the (111) reflection. This error is almost entirely responsible for the dip of the radial distribution curve below the zero line in the central region of Fig. 1.

Discussion

The scattering powers of all atoms except mercury are relatively so small that their positions can only be inferred. The $\mathrm{Hg}_{2} \mathrm{~N}^{+}$three-dimensional framework contains large channels in which it is presumed that the negative ions and water molecules are more or less randomly situated in such a way as to satisfy the electrostatic valency and the steric requirements.

With respect to the base and its salts we have found that photographs of $\mathrm{Hg}_{2} \mathrm{NOH} .2 \mathrm{H}_{2} \mathrm{O}$ are substantially identical with those of $\mathrm{Hg}_{2} \mathrm{NCl} . \mathrm{H}_{2} \mathrm{O}, \mathrm{Hg}_{2} \mathrm{NCl}$, $\mathrm{Hg}_{2} \mathrm{NBr} . \mathrm{H}_{2} \mathrm{O}, \mathrm{Hg}_{2} \mathrm{NI}, \mathrm{Hg}_{2} \mathrm{NNO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{NClO}_{4}$. Probably the amounts of water are not really definite, but merely enter the structure in inexact proportions (see Sidgwick, 1950, vol. 1, p. 318).

The $\mathrm{Hg}-\mathrm{N}$ distance in $\mathrm{Hg}_{2} \mathrm{NOH} .2 \mathrm{H}_{2} \mathrm{O}$ is $2.073 \pm$ 0.003 A. Determinations of $\mathrm{Hg} X$ bond lengths have been reported (Gregg, Hampson, Jenkins, Sutton \& Sutton, 1937)* for the gaseous molecules $\mathrm{HgCl}_{2}(2.34 \mathrm{~A}$.$) ,$ $\mathrm{HgBr}_{2}\left(2 \cdot 44 \mathrm{~A}\right.$) and HgI_{2} (2.61 A.). If one subtracts from these bond lengths the covalent radii of $\mathrm{Cl}(0.99 \mathrm{~A}$.), Br (1.14 A.) and I (1.33 A.) (Pauling, 1940, p. 164), the $s p$ radii $1.35,1.30$ and 1.28 A . for Hg are obtained. When the average of these values, 1.31 A ., is added to the nitrogen covalent radius, 0.70 A ., the predicted $\mathrm{Hg}-\mathrm{N}$ distance of 2.01 A . is still somewhat less than the observed value of 2.073 A . No explanation of this effect is offered except possibly that the electronegativity difference in the bond may be less than average, or that the bonding of the negative ions in Millon's base and its salts may weaken the $\mathrm{Hg}-\mathrm{N}$ bonds slightly.

I wish to acknowledge with thanks the help of Mr Indra Arora who constructed the radial distribution strips with the aid of a grant from the Graduate School of the University of Minnesota.

[^0]
References

Arora, S. D., Lipscomb, W. N. \& Sneed, M. C. (1951). J. Amer. Chem. Soc. (to be published).

Gregg, A. H., Hampson, G. C., Jenkins, G. J., Sutton, P. L. F. \& Sutton, L. E. (1937). Trans. Faraday Soc. 33, 852.
Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Berlin: Borntraeger.

Maxwell, L. R. \& Moseley, V. M. (1940). Phys. Rev. 57, 21.
Pauling, L. (1940). The Nature of the Chemical Bond. 2nd ed. Ithaca: Cornell University Press.
Sidgwick, N. V. (1950). The Chemical Elements and their Compounds. Oxford: Clarendon Press.
Waser, J. \& Schomaker, V. (1945). J. Amer. Chem. Soc. 67, 2014.

Acta Cryst. (1951). 4, 158

Length of Central Bond in Thiophthen*

By Verner Schomaker
Gates and Crellin Laboratories, California Institute of Technology, Pasadena, California, U.S.A.

(Received 25 September 1950)

Longuet-Higgins (1950) has suggested that the central bond, 9 , in the thiophthen molecule

is compressed by bond angle stresses, and, by a consideration of the cumulative strains around $\mathrm{C}_{3}=C_{4}$, has calculated that the amount of this compression is 0.06 A ., in agreement with the 0.05 A . discrepancy bitween the observed bond length (Cox, Gillot \& Jeffrey, 1949) and Evans \& de Heer's (1949) semi-theoretical estimate. If the suggested effect were so large in thiophthen, it might be important also in many other cyciic molecules for which it has likewise hitherto boen neglected (presumably because the force constan's of bond-bending are ordinarily regarded as much smaller than those of bond-stretching), and, indeed, LongueiHiggins's method of calculation, which in effect neglects the angle strains at $2,5,2^{\prime}$ and 5^{\prime}, would indicate a bond compression whenever the adjacent interior bond angles are constrained below their normal values. However, consideration of such a simple case as the symmetrical four-membered ring of cyclobutane, for which the tensile stress due to the opposite-angle strains obviously balances the compressive stress due to the adjacent angle strains, shows this method of calculation to be quite wrong as well as incomplete, and implies that Longuet-Higgins's interesting suggestion cannot ac-

[^1]count for the distance anomaly in thiophthen and will not prove fruitful except for rings which are suitably unsymmetrical as well as highly strained.

Consider a planar n-ring with potential function $V\left(q_{1}, \ldots, q_{2 n}\right)$, in which the first n co-ordinates are the interior bond angles and the last n the bond lengths. The equations of static equilibrium may be written as

$$
\frac{\partial V}{\partial q_{i}}+\lambda \xi_{i}+\mu \eta_{i}+\nu \zeta_{i}=0
$$

and the auxiliary equations of ring closure, in first approximation, as

$$
\begin{array}{lll}
\Sigma \xi_{i}\left(q_{i}-q_{i}^{0}\right)=0 & (x \text { component }, \\
& \Sigma \eta_{i}\left(q_{i}-q_{i}^{0}\right)=0 & (y \text { component }, \\
\text { and } & \Sigma \zeta_{i}\left(q_{i}-q_{i}^{0}\right)=0 & \text { (angle sum) },
\end{array}
$$

the three redundancies being havdled by means of the Lagrangean multipliers λ, μ, and ν. If the positive direction of a bond is counter-clockwise and the Cartesian co-ordinates of the atom at a bond angle q_{i} are $x_{i}, y_{i}(i=1, \ldots, n)$ relative to an arbitrary origin, the quantities ξ_{i}, η_{i} and ζ_{i} may be written as $\xi_{i}=-y_{i}$, $\eta_{i}=x_{i}$, and $\zeta_{i}=1$ for $i=1, \ldots, n$ and $\xi_{i}=\cos \left(r_{i}, \overrightarrow{O X}\right)$, $\eta_{i}=\sin \left(\overrightarrow{r_{i}}, \overrightarrow{O X}\right)$, and $\zeta_{i}=0$ for $i=n+1, \ldots, 2 n$.

If the Cartesian co-ordinate axes are rotated by the angle

$$
\theta_{0}=\cos ^{-1}\left[\lambda / \sqrt{ }\left(\mu^{2}+\nu^{2}\right)\right]=\sin ^{-1}\left[\mu / \sqrt{ }\left(\lambda^{2}+\mu^{2}\right)\right]
$$

to give transformed Cartesian atomic co-ordinates x_{i}^{\prime}, y_{i}^{\prime}, the equations of equilibrium reduce to

$$
\frac{\partial V}{\partial q_{i}}-\sqrt{ }\left(\lambda^{2}+\mu^{2}\right) y_{i}^{\prime}+\nu=0, \quad i=1, \ldots, n
$$

and

$$
\frac{\partial V}{\partial q_{i}}+\sqrt{ }\left(\lambda^{2}+\mu^{2}\right) \cos \left(\overrightarrow{r_{i}}, \overrightarrow{O X^{\prime}}\right)=0, \quad i=n+1, \ldots, 2 n
$$

[^0]: * A value of $2.27 \pm 0.03 \mathrm{~A}$. is reported (Maxwell \& Moseley, 1940) for the $\mathrm{Hg}-\mathrm{Cl}$ distance in gaseous HgCl_{2}.

[^1]: * Contribution No. 1470 from the Gates and Crellin Laboratories.

